Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Dalton Trans ; 53(14): 6275-6281, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506644

RESUMEN

The detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is not only of great significance in the areas of biomedicine and neurochemistry but also helpful in disease diagnosis and pathology research. Due to their diverse structures, designability, and large specific surface areas, metal-organic frameworks (MOFs) have recently caught considerable attention in the electrochemical field. Herein, a family of heterometallic MOFs with amino modification, MIL-125(Ti-Al)-xNH2 (x = 0%, 25%, 50%, 75%, and 100%), were synthesized and employed as electrochemical sensors for the detection of AA, DA, and UA. Among them, MIL-125(Ti-Al)-75%NH2 exhibited the most promising electrochemical behavior with 40% doping of carbon black in 0.1 M PBS (pH = 7.10), which displayed individual detection performance with wide linear detection ranges (1.0-6.5 mM for AA, 5-100 µM for DA and 5-120 µM for UA) and low limits of detection (0.215 mM for AA, 0.086 µM for DA, and 0.876 µM for UA, S/N = 3). Furthermore, the as-prepared MIL-125(Ti-Al)-75%NH2/GCE provided a promising platform for future application in real sample analysis, owing to its excellent anti-interference performance and good stability.


Asunto(s)
Dopamina , Estructuras Metalorgánicas , Dopamina/análisis , Ácido Úrico/análisis , Ácido Ascórbico/química , Electrodos , Titanio , Técnicas Electroquímicas
2.
Phys Chem Chem Phys ; 26(11): 8716-8723, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416055

RESUMEN

Carbon nanorings have attracted substantial interest from synthetic chemists due to their unique topological structures and distinct physical properties. An intriguing π-conjugated double-nanoring structure, denoted as [8]CPP-[10]cyclacene, was constructed via the integration of [8]cycloparaphenylene ([8]CPP) into [10]cyclacene. Using the external electric field stimuli-responsiveness of [8]CPP-[10]cyclacene, directional charge transfer can be induced, resulting in the emergence of intriguing properties. The effects of the external electric field in three specific directions were explored, vertically in the [8]CPP unit (Fy), vertically in the [10]cyclacene unit (Fz), and horizontally along the double nanorings diameter (Fx). Interestingly, the external electric field vertically to the [10]cyclacene unit significantly enhanced the first hyperpolarizability (ßtot) compared to that vertically to the [8]CPP unit. Notably, [8]CPP-[10]cyclacene under Fx exhibited significantly larger the ßtot values (1.48 × 105 a.u.) than those of vertical Fy and Fz. This work opens up a wide range of nonlinear optics, making it a compelling area to explore in the field of carbon nanomaterials.

3.
Asian J Androl ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319194

RESUMEN

Ex vivo tissue culture of the human corpus cavernosum (CC) can be used to explore the tissue structural changes and complex signaling networks. At present, artificial CC-like tissues based on acellular or three-dimensional (3D)-printed scaffolds are used to solve the scarcity of primary penis tissue samples. However, inconvenience and high costs limit the wide application of such methods. Here, we describe a simple, fast, and economical method of constructing artificial CC-like tissue. Human CC fibroblasts (FBs), endothelial cells (ECs), and smooth muscle cells (SMCs) were expanded in vitro and mixed with Matrigel in specific proportions. A large number of bubbles were formed in the mixture by vortexing combined with pipette blowing, creating a porous, spongy, and spatial structure. The CC FBs produced a variety of signaling factors, showed multidirectional differentiation potential, and grew in a 3D grid in Matrigel, which is necessary for CC-like tissue to maintain a porous structure as a cell scaffold. Within the CC-like tissue, ECs covered the surface of the lumen, and SMCs were located inside the trabeculae, similar to the structure of the primary CC. Various cell components remained stable for 3 days in vitro, but the EC content decreased on the 7th day. Wingless/integrated (WNT) signaling activation led to lumen atrophy and increased tissue fibrosis in CC-like tissue, inducing the same changes in characteristics as in the primary CC. This study describes a preparation method for human artificial CC-like tissue that may provide an improved experimental platform for exploring the function and structure of the CC and conducting drug screening for erectile dysfunction therapy.

4.
Inorg Chem ; 63(4): 1784-1792, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38232070

RESUMEN

Catalytic hydrogenation of nitrobenzene (Ph-NO2) to aniline (Ph-NH2) is a model reaction in the field of catalysis, in which the development of efficient catalysts remains a great challenge due to the lack of strategies to solve activity and selectivity problems. In this work, the mechanism of Ph-NO2 hydrogenation over Pt1 supported on phosphomolybdic acid (α-PMA) was proposed by density functional theory (DFT) calculations. The results show that the dissociation of the first and second N-O bonds is triggered by single H-induced and double H-induced mechanisms, respectively. The limiting potential of the reaction process is -0.19 V, which is the smallest potential in the field of Ph-NO2 reduction reaction to date. In the whole reaction process, the catalytic active site is the Pt atom, and polyoxometalate plays the role of an electronic sponge in the reaction. Additionally, based on experimentally confirmed Pt1/Na3PMA, the reduction capacity of Pd1/Na3PMA toward Ph-NO2 was predicted by DFT calculation. The distinctive adsorption patterns of Ph-NO2 on Pt1/Na3PMA and Pd1/Na3PMA were elucidated using the DOS diagram and fragment molecular orbital analysis. We anticipate that our theoretical calculations can provide novel perspectives for experimental researchers.

5.
Nanoscale ; 15(46): 18883-18890, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37974481

RESUMEN

Developing highly efficient, stable, and cost-effective two-dimensional (2D) conjugated polymers (CPs) for overall water splitting (OWS) is critical for producing clean and renewable hydrogen energy, yet it remains a great challenge. Here, we designed eight 2D CPs through the topological assembly of diacetylene and benzene-derived molecular linkers that can offer active sites for hydrogen and oxygen evolution reactions, and explored their structural, electronic, optical, and photocatalytic OWS properties by performing first-principles computations. It is shown that incorporating benzo-heterocyclic rings into CPs can significantly modulate the electronic structures of CPs and broaden the spectral absorption, suitable for visible-light-driven OWS. Remarkably, through a range of screening criteria, including stability, electronic band structures, band edge alignments, and photocatalytic activity, we found that CP-4 based on diacetylene and benzotrifuran can spontaneously trigger the OWS in a neutral environment under its own light-induced bias, eliminating the need for sacrificial agents or cocatalysts. Specifically, the HER active site is primarily located at diacetylene moieties, while the OER active site is mainly concentrated on the benzo-heterocyclic rings. Moreover, the ideal STH efficiency for OWS on CP-4 was estimated to be 13.87%, highlighting its potential as a prospective photocatalyst for large-scale industrial OWS. Our findings open a door to the rational design of novel polymer photocatalysts for OWS.

6.
Dalton Trans ; 52(41): 14852-14858, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791974

RESUMEN

In this study, a new cobalt-based metal-organic framework (JLNU-500), [Co2(OH)(PBA)(AIP)]·3DMA·0.75H2O (4-(pyridin-4-yl) benzoic acid (HPBA), 5-aminoisophthalic acid (H2AIP) and N,N-dimethylacetamide (DMA)), was fabricated using a solvothermal method. JLNU-500 has 3D network architecture with 1D nanopore channels. The prepared JLNU-500 can activate peroxymonosulfate (PMS) for Rhodamine B (RhB) dye decolorization. Interestingly, catalyst JLNU-500 exhibited high efficiency for PMS activation, and nearly 100% (above 99.8%) removal of RhB with a high concentration (50.0 mg L-1, 100 mL) was achieved within 6 min. The reaction rate constant of the JLNU-500/PMS system was 1.02 min-1 calculated based on the pseudo-first-order kinetics, which is higher than that of the other reported catalysts. Furthermore, the factors, which could influence PMS activation were also investigated, such as PMS dosage, catalyst dosage, pollutant RhB concentration, reaction temperature and solution pH. More importantly, the radical trapping experiments ferreted out that sulfate (SO4˙-) and hydroxyl (˙OH) radicals were the dominating oxidants in the removal of RhB. Moreover, the possible degradation mechanism was elucidated. This study provides new prospects for fabricating new MOFs that can potentially be employed for high-efficiency catalytic oxidation as heterogeneous catalysts.

7.
Molecules ; 28(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836811

RESUMEN

Recently, non-fullerene-based organic solar cells (OSCs) have made great breakthroughs, and small structural differences can have dramatic impacts on the power conversion efficiency (PCE). We take ITIC and its isomers as examples to study their effects on the performance of OSCs. ITIC and NFBDT only differed in the side chain position, and they were used as models with the same donor molecule, PBDB-T, to investigate the main reasons for the difference in their performance in terms of theoretical methods. In this work, a detailed comparative analysis of the electronic structure, absorption spectra, open circuit voltage and interfacial parameters of the ITIC and NFBDT systems was performed mainly by combining the density functional theory/time-dependent density functional theory and molecular dynamics simulations. The results showed that the lowest excited state of the ITIC molecule possessed a larger ∆q and more hybrid FE/CT states, and PBDB-T/ITIC had more charge separation paths as well as a larger kCS and smaller kCR. The reason for the performance difference between PBDB-T/ITIC and PBDB-T/NFBDT was elucidated, suggesting that ITIC is a superior acceptor based on a slight modulation of the side chain and providing a guiding direction for the design of superior-performing small molecule acceptor materials.

8.
Inorg Chem ; 62(39): 15992-15999, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37735108

RESUMEN

Metal-organic frameworks constructed from Zr usually possess excellent chemical and physical stability. Therefore, they have become attractive platforms in various fields. In this work, two families of hybrid materials based on ZrSQU have been designed and synthesized, named Im@ZrSQU and Cu@ZrSQU, respectively. Im@ZrSQU was prepared through the impregnation method and employed for proton conduction. Im@ZrSQU exhibited terrific proton conduction performance in an anhydrous environment, with the highest proton conduction value of 3.6 × 10-2 S cm-1 at 110 °C. In addition, Cu@ZrSQU was synthesized via the photoinduction method for the photoreduction of CO2, which successfully promoted the conversion of CO2 into CO and achieved the CO generation rate of up to 12.4 µmol g-1 h-1. The photocatalytic performance of Cu@ZrSQU is derived from the synergistic effect of Cu NPs and ZrSQU. Based on an in-depth study and discussion toward ZrSQU, we provide a versatile platform with applications in the field of proton conduction and photocatalysis, which will guide researchers in their further studies.

9.
Nat Commun ; 14(1): 5025, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596263

RESUMEN

Precise synthesis of polyoxometalates (POMs) is important for the fundamental understanding of the relationship between the structure and function of each building motif. However, it is a great challenge to realize the atomic-level tailoring of specific sites in POMs without altering the major framework. Herein, we report the case of Ce-mediated molecular tailoring on gigantic {Mo132}, which has a closed structural motif involving a never seen {Mo110} decamer. Such capped wheel {Mo132} undergoes a quasi-isomerism with known {Mo132} ball displaying different optical behaviors. Experiencing an 'Inner-On-Outer' binding process with the substituent of {Mo2} reactive sites in {Mo132}, the site-specific Ce ions drive the dissociation of {Mo2*} clipping sites and finally give rise to a predictable half-closed product {Ce11Mo96}. By virtue of the tailor-made open cavity, the {Ce11Mo96} achieves high proton conduction, nearly two orders of magnitude than that of {Mo132}. This work offers a significant step toward the controllable assembly of POM clusters through a Ce-mediated molecular tailoring process for desirable properties.

10.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447785

RESUMEN

Starting from the need for emergency rescue information transmission in tunnel engineering accidents, this article focuses on researching and solving the technical problems of information transmission between rescue personnel and trapped personnel after tunnel engineering collapse accidents, before and during the rescue process. The research objects are the information transmission channel and grounding electrode in the earth current field information transmission technology, and the electromagnetic characteristics of the earth medium and the electrical performance of the grounding electrode are studied and analyzed using the electromagnetic simulation software Maxwell based on finite element algorithm, establish a three-dimensional model based on the transmission of current field information of the ground electrode, analyze the effects of the electrode array, electrode depth, and radius on impedance. Research has shown that the impedance of the earth is related to the resistivity of the medium and is not a human-controllable factor. To reduce the contact impedance of an electric dipole antenna, one should start with the contact impedance of the earth electrode. The impedance of the transmitting end is an important factor affecting the efficiency of information transmission; parallel connection of multiple grounding electrodes, increasing the depth of grounding electrode penetration into the soil layer, and increasing the radius between grounding electrode pairs are all effective methods to reduce the contact impedance of electric dipole antennas, thereby improving information transmission capacity. To achieve wireless information transmission through the stratum, by appropriately selecting the operating frequency of electromagnetic waves, a certain distance of signal transmission can be achieved.


Asunto(s)
Algoritmos , Programas Informáticos , Humanos , Electrodos , Fenómenos Electromagnéticos , Impedancia Eléctrica , Tecnología
11.
J Chem Inf Model ; 63(14): 4392-4404, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37418660

RESUMEN

Two-photon photodynamic therapy (TP-PDT), as a treatment technology with deep penetration and less damage, provides a broad prospect for cancer treatment. Nowadays, the development of TP-PDT suffers from the low two-photon absorption (TPA) intensity and short triplet state lifetime of photosensitizers (PSs) used in TP-PDT. Herein, we propose some novel modification strategies based on the thionated NpImidazole (the combination of naphthalimide and imidazole) derivatives to make efforts on those issues and obtain corresponding fluorescent probes for detecting ClO- and excellent PSs for TP-PDT. Density functional theory (DFT) and time-dependent DFT (TD-DFT) are used to help us characterize the photophysical properties and TP-PDT process of the newly designed compounds. Our results show that the introduction of different electron-donating groups at the position 4 of NpImidazole can effectively improve their TPA and emission properties. Specifically, 3s with a N,N-dimethylamino group has a large triplet state lifetime (τ = 699 µs) and TPA cross section value (δTPA = 314 GM), which can effectively achieve TP-PDT; additionally, 4s (with electron-donating group 2-oxa-6-azaspiro[3.3]heptane in NpImidazole) effectively realizes the dual-function of a PS for TP-PDT (τ = 25,122 µs, δTPA = 351 GM) and a fluorescent probe for detecting ClO- (Φf = 29% of the product 4o). Moreover, an important problem is clarified from a microscopic perspective, that is, why the transition property of 3s and 4s (1π-π*) from S1 to S0 is different from that of 1s and 2s (1n-π*). It is hoped that our work can provides valuable theoretical clues for the design and synthesis of heavy-atom-free NpImidazole-based PSs and fluorescent probes for the detection of hypochlorite.


Asunto(s)
Fotoquimioterapia , Ácido Hipocloroso , Colorantes Fluorescentes , Fármacos Fotosensibilizantes/farmacología , Fotones
12.
Angew Chem Int Ed Engl ; 62(31): e202307632, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37280179

RESUMEN

In this work, we innovatively assembled two types of traditional photosensitizers, that is pyridine ruthenium/ferrum (Ru(bpy)3 2+ /Fe(bpy)3 2+ ) and porphyrin/metalloporphyrin complex (2HPor/ZnPor) by covalent linkage to get a series of dual photosensitizer-based three-dimensional metal-covalent organic frameworks (3D MCOFs), which behaved strong visible light-absorbing ability, efficient electron transfer and suitable band gap for highly efficient photocatalytic hydrogen (H2 ) evolution. Rubpy-ZnPor COF achieved the highest H2 yield (30 338 µmol g-1 h-1 ) with apparent quantum efficiency (AQE) of 9.68 %@420 nm, which showed one of the best performances among all reported COF based photocatalysts. Furthermore, the in situ produced H2 was successfully tandem used in the alkyne hydrogenation with ≈99.9 % conversion efficiency. Theoretical calculations reveal that both the two photosensitizer units in MCOFs can be photoexcited and thus contribute optimal photocatalytic activity. This work develops a general strategy and shows the great potential of using multiple photosensitive materials in the field of photocatalysis.

13.
Front Oncol ; 13: 1165437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313468

RESUMEN

Objective: Fondaparinux is a synthetic anticoagulant for the prevention of venous thromboembolism (VTE), and its administration in Chinese cancer patients is rarely reported. This study aimed to assess the efficacy and safety of fondaparinux in preventing VTE in Chinese cancer patients. Methods: A total of 224 cancer patients who received fondaparinux treatment were reviewed in this single-arm, multicenter, retrospective study. Meanwhile, VTE, bleeding, death, and adverse events of those patients in the hospital and at 1 month after treatment (M1) were retrieved, respectively. Results: The in-hospital VTE rate was 0.45% and there was no (0.00%) VTE occurrence at M1. The in-hospital bleeding rate was 2.68%, among which the major bleeding rate was 2.23% and the minor bleeding rate was 0.45%. Moreover, the bleeding rate at M1 was 0.90%, among which both the major and minor bleeding rates were 0.45%. The in-hospital death rate was 0.45% and the death rate at M1 was 0.90%. Furthermore, the total rate of adverse events was 14.73%, including nausea and vomiting (3.13%), gastrointestinal reactions (2.23%), and reduced white blood cells (1.34%). Conclusion: Fondaparinux could effectively prevent VTE with low bleeding risk and acceptable tolerance in cancer patients.

14.
Dalton Trans ; 52(20): 6847-6852, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37144551

RESUMEN

Metal-organic frameworks (MOFs) as types of proton conductive materials have attracted much attention. Here, an acylamide-functionalized 3D MOF, [Ni3(TPBTC)2(stp)2(H2O)4]·2DMA·32H2O, has been successfully constructed via combining Ni(NO3)2, TPBTC (TPBTC = benzene-1,3,5-tricarboxylic acid tris-pyridin-4-ylamide) and 2-H2stp (2-H2stp = 2-sulfoterephthalic acid monosodium salt) under solvothermal conditions. Single-crystal X-ray diffraction revealed that there are uncoordinated guest DMA molecules in the pores of the compound. On removal of guest DMA molecules, the proton conductivity of the compound increased to 2.25 × 10-3 S cm-1 at 80 °C and 98% RH which is about 110 times that of the original material. It is hoped that this work can provide essential insight for designing and obtaining improved crystalline-state proton conducting materials by considering the influences of guest molecules on proton conduction properties of porous materials.

15.
Biomed Phys Eng Express ; 9(4)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140156

RESUMEN

Purpose.This dosimetric study is intended to lower the modulation factor in lung SBRT plans generated in the Eclipse TPS that could replace highly modulated plans that are prone to the interplay effect.Materials and methods.Twenty clinical lung SBRT plans with high modulation factors (≥4) were replanned in Varian Eclipse TPS version 15.5 utilizing 2 mm craniocaudal and 1 mm axial block margins followed by light optimization in order to reduce modulation. A unique plan optimization methodology, which utilizes a novel shell structure (OptiForR50) for R50%optimization in addition to five consecutive concentric 5 mm shells, was utilized to control dose falloff according to RTOG 0813 and 0915 recommendations. The prescription varied from 34-54 Gy in 1-4 fractions, and the dose objectives were PTV D95%= Rx, PTV Dmax< 140% of Rx, and minimizing the modulation factor. Plan evaluation metrics included modulation factor, CIRTOG, homogeneity index (HI), R50%, D2cm, V105%, and lung V8-12.8Gy(Timmerman Constraint). A random-intercept linear mixed effects model was used with a p ≤ 0.05 threshold to test for statistical significance.Results.The retrospectively generated plans had significantly lower modulation factors (3.65 ± 0.35 versus 4.59 ± 0.54; p < 0.001), lower CIRTOG(0.97 ± 0.02 versus 1.02 ± 0.06; p = 0.001), higher HI (1.35 ± 0.06 versus 1.14 ± 0.04; p < 0.001), lower R50%(4.09 ± 0.45 versus 4.56 ± 0.56; p < 0.001), and lower lungs V8-12.8Gy(Timmerman) (4.61% ± 3.18% versus 4.92% ± 3.37%; p < 0.001). The high dose spillage V105%was borderline significantly lower (0.44% ± 0.49% versus 1.10% ± 1.64%; p = 0.051). The D2cmwas not statistically different (46.06% ± 4.01% versus 46.19% ± 2.80%; p = 0.835).Conclusion.Lung SBRT plans with significantly lower modulation factors can be generated that meet the RTOG constraints, using our planning strategy.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Radiocirugia/métodos , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo , Pulmón
16.
Inorg Chem ; 62(20): 7753-7763, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37154416

RESUMEN

To elucidate the luminescence mechanism of highly efficient blue Cu(N^N)(POP)+-type thermally activated delayed fluorescence (TADF) materials, we have selected Cu(pytfmpz)(POP)+ (1) and Cu(pympz)(POP)+ (2) as targets to investigate the photophysical properties in both solution and solid phases. The self-consistent electrostatic potential (ESP) embedded charge within the quantum mechanics/molecular mechanics (QM/MM) method demonstrates a greater advantage over the charge equilibrium (QEQ) in accurately calculating atomic charges and reasonably describing the polarization effect, ultimately resulting in a favorable consistency between simulation and experimental measurements. After systematic and quantitative simulation, it has been found that complex 2, with an electron-donating group of -CH3, exhibits a much more blue-shifted spectrum and a significantly enhanced efficiency in comparison to complex 1 with -CF3. This is due to the widened HOMO-LUMO gap as well as the narrowed energy gap between the lowest singlet and triplet excited states (ΔEST), respectively. Then, the designed complex 3 is introduced with a stronger electron donor and larger tert-butyl group, which plays a key role in simultaneously suppressing the structural distortion and reducing the ΔEST. This leads to a faster reverse intersystem crossing process than that of the two experimental complexes in solution, turning out to be a new deep-blue-emitting material with excellent TADF performance.

18.
Chem Commun (Camb) ; 59(47): 7212-7215, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37219366

RESUMEN

ITIC-series nonfullerene organic photovoltaics (NF OPVs) have realized the simultaneous increases of the short-circuit current density (JSC) and open-circuit voltage (VOC), called the positive correlation between JSC and VOC, which could improve the power conversion efficiency (PCE). However, it is complicated to predict the formation of positive correlation in devices through simple calculations of single molecules due to their dimensional differences. Here, a series of symmetrical NF acceptors blended with the PBDB-T donor were chosen to establish an association framework between the molecular modification strategy and positive correlation. It can be found that the positive correlation is modification site-dependent following the energy variation at the different levels. Furthermore, to illustrate a positive correlation, the energy gap differences (ΔEg) and the energy level differences of the lowest unoccupied molecular orbitals (ΔELUMO) between the two changed acceptors were proposed as two molecular descriptors. Combined with the machine learning model, the accuracy of the proposed descriptor is more than 70% for predicting the correlation, which verifies the reliability of the prediction model. This work establishes the relative relationship between two molecular descriptors with different molecular modification sites and realizes the prediction of the trend of efficiency. Therefore, future research should focus on the simultaneous enhancement of photovoltaic parameters for high-performance NF OPVs.


Asunto(s)
Aprendizaje Automático , Reproducibilidad de los Resultados
19.
Chem Asian J ; 18(12): e202300175, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37114295

RESUMEN

Photodynamic therapy (PDT) relying on photosensitizer-induced production of reactive oxygen species (ROS) for killing cancer cells has emerged as a non-invasive anti-cancer strategy. Compared with oxygen-dependent type-II photosensitizers (PSs) for PDT, the development of intrinsic oxygen-independent type-I ones is highly desired but remains a challenge. In this work, two netural Ir(III) complexes that can produce type-I reactive oxygen species, namely MPhBI-Ir-BIQ (Ir-1) and NPhBI-Ir-BIQ (Ir-2), were synthesized. Bright deep-red emitting nanoparticles with moderate particle size are beneficial for imaging-guided PDT. In in vitro experiments, importantly, the excellent biocompatibility, the targeting of lipid droplets (LDs), and the type-I ⋅OH and O2 ⋅- generation promoted effective photodynamic activity. This work will guide the building of type-I Ir(III) complexes PSs and can provide advantages for potential clinical applications under hypoxic conditions.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno , Gotas Lipídicas , Oxígeno , Neoplasias/tratamiento farmacológico
20.
Sensors (Basel) ; 23(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112297

RESUMEN

In order to resolve the problem that the sample of image for internal detection of DN100 buried gas pipeline microleakage is single and difficult to identify, a recognition method of microleakage image of the pipeline internal detection robot is proposed. First, nongenerative data augmentation is used to expand the microleakage images of gas pipelines. Secondly, a generative data augmentation network, Deep Convolutional Wasserstein Generative Adversarial Networks (DCWGANs), is designed to generate microleakage images with different features for detection in the pipeline of gas pipelines to achieve sample diversity of microleakage images of gas pipelines. Then, a bi-directional feature pyramid network (BiFPN) is introduced into You Only Look Once (YOLOv5) to retain more deep feature information by adding cross-scale connecting lines in the feature fusion structure; finally, a small target detection layer is constructed in YOLOv5 so that more shallow feature information can be retained to achieve small-scale leak point recognition. The experimental results show that the precision of this method for microleak identification is 95.04%, the recall rate is 94.86%, the mAP value is 96.31%, and the minimum size of identifiable leaks is 1 mm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...